1+21/100=(1+x/100)^2

Simple and best practice solution for 1+21/100=(1+x/100)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1+21/100=(1+x/100)^2 equation:


x in (-oo:+oo)

21/100+1 = (x/100+1)^2 // - (x/100+1)^2

21/100-(x/100+1)^2+1 = 0

21/100-1*(1/100*x+1)^2+1 = 0

(-1*100*(1/100*x+1)^2)/100+21/100+(1*100)/100 = 0

1*100-1*100*(1/100*x+1)^2+21 = 0

100-1/100*x^2-2*x-79 = 0

21-1/100*x^2-2*x = 0

21-1/100*x^2-2*x = 0

21-1/100*x^2-2*x = 0

DELTA = (-2)^2-(-1/100*4*21)

DELTA = 121/25

DELTA > 0

x = ((121/25)^(1/2)+2)/(-1/100*2) or x = (2-(121/25)^(1/2))/(-1/100*2)

x = -210 or x = 10

(x+210)*(x-10) = 0

((x+210)*(x-10))/100 = 0

((x+210)*(x-10))/100 = 0 // * 100

(x+210)*(x-10) = 0

( x+210 )

x+210 = 0 // - 210

x = -210

( x-10 )

x-10 = 0 // + 10

x = 10

x in { -210, 10 }

See similar equations:

| 1+21/100=(1+x/100)(1+y/100) | | 3/7=n+2/7 | | 3x+2y=48 | | 7x-(4x/8) | | 1,21=(1+x/100)(1+y/100) | | (2t^2-t-3)(2t^2+2t-1)= | | (x^3+x^2+x+1)(9x-5)= | | 1,21=(1+x/100)^2 | | (x^3+x^2+x+1)(15x-2)= | | (2x-3)(x^2-5x+3)= | | (6x+5)(4x^2+2x+2)= | | 4t^9(t-t^2+2t^3)= | | x^2+16=3 | | 6/b+5=4/b+5 | | -3(x-3)=6x+7-5x | | 3a+4b-(-6a-3b)= | | 5x+1whenx=-3 | | (1/2)f+(3/4)=(1/4)f | | X^2-327680*X=1296 | | 14x33/8 | | x^2-4*x-64=0 | | p=.052*d*m | | (3.14*32^3)/32 | | X^2-32760*X=1296 | | 3a-a=a+8 | | 6x+7=8x+9 | | x^2-4y^2-16y-7=0 | | (6x^2-2x-35)+(9x^2+5x)= | | (6v^2+3v)-(-4v^2-3v+7)= | | (9x^3-7x^2+5x)+(6x^3+9x^2-12x)= | | 23+{23+34}+32= | | [(8m^2+5m-2)-(8m-2m+9)]-(m^2+m+6)= |

Equations solver categories